Migrating from MySQL to PostgreSQL

Paul Gross

WWW. BRAINTREEPAYMENTSOLUTIONS. COM

http://www.pgrs.net
@pgr0ss

Braintree is a payment gateway

People enter their credit cards on a website
Merchants pass those along to us

We verify and charge the cards

Merchants rely on us

When we are down, our merchants cannot process credit cards

Downtime is a big deal!

Braintree architecture

Ruby on Rails application
Load balancer
Apache app servers with passenger

MySQL

Deployment with schema changes

Push new code to app servers
Put up maintenance page
Make database schema changes

Take down maintenance page

We are down for as long as the schema
changes take place

MySQL is really slow at migrating large tables

This is the primary reason we migrated to PostgreSQL

Table with 10 columns and 1 million rows

MySQL PostgreSQL
Adding a column 26 seconds 400 milliseconds
Adding an index 30 seconds 60 seconds

PostgreSQL can add indexes without locking tables
CREATE INDEX CONCURRENTLY index_name ON table (column);

Hacks to work around MySQL

oak-online-alter-table

Builds a ghost table with new schema
Copies all data

Replaces original table

We started seeing deadlocks with
MySQL

CREATE TABLE foo (id INT) ENGINE INNODB;

-- session 1 session 2

UPDATE actions SET id = 4 WHERE

1d = 2;

Researching the migration

Minimal downtime
Map data types

Set primary key sequences based on the number of rows

We needed a migration like rsync

Initial migration while the site is up
Delta migration while the site is up
Take the site down
Run delta migration one last time

Bring the site back up with PostgreSQL

We looked at tools

Most were one shot and took a long time
Most were very complex
So we decided to write our own

Use ActiveRecord

Assumptions of our migration script

Tables have a primary key
Tables have an updated_at column

updated_at has an index

ActiveRecord Primer

C].GSS CCl't < ActiveRecord: :Base
set_table_name :cats
end

Cat.create!(
.name => "Kasha",
:domesticated => true,
:adopted_at => Time.now

kasha = Cat.find(1)

puts kasha.domesticated?
#=> true

puts kasha.adopted_at
#=> Tue Mar 22 15:34:36 -0400 2011

Migration script

class MysqlModelBase < nctiverecord::Base
establish_connection(
:adapter => "mysqiv,
.username => "username",
:database => "ourdo",
; :encoding => "urrs"

end

class PGModelBase < activeRecord::Base
establish_connection(
:adapter' => "postgresqgl",
.username => "username",
:database => "ourdn",
:encoding => "urrs"

end

MysqlModelBase.connection.tables.each do |table]
last_updated_at = PGModelBase.connection.select_value(<<-sor)
soL SELECT MAX(updated_at) FROM #{table}

updated_ids = MysqglModelBase.connection.select_values(<<-sow)
SELECT id FROM #{table}
50 WHERE updated_at >= '#{last updated at}'
L

PGModelBase. connection.execute(<<-son)
DELETE FROM #{table} . o
0 WHERE id IN (#{updated_ids.join(",")})
L

mysql_ids = MysqlModelBase.connection.select_values(<<-sor)
oL SELECT id FROM #{table}

postgres_ids = PGModelBase.connection.select_values(<<-sor)
oL SELECT 1id FROM #{table}

deleted_record_ids = postgres_ids - mysql_ids

PGModelBase. connection.execute(<<-son)
DELETE FROM #{table} _ o
$ WHERE 1d IN (#{deleted_record_ids.join(",")})
L

new_record_ids = mysql_ids - postgres_ids

mysql_model_class = Class.new(MysqlModelBase) do
. set_table_name table
en

postgres_model_class = Class.new(PGModelBase) do
; set_table_name table
en

mysql_models = m%sgl_model_class.find(new_record_ids)
mysql_models.each do |Imysql_model |
ActiveRecord maps data types _
; postgres_model_class.create! (mysql_model.attributes)
en

PGModelBase. connection.execute(<<-sor)
SELECT SETVAL('#{table}_id_seq' R
soL (SELECT MAX(id) FROM #{table}))

The real script

github.com/braintree/mysqgl_to_postgresqgl

Processes tables in parallel
Pulls back data in groups instead of all at once
Handles tables without an updated_at

Prints debug messages as it runs

MySQL is case insensitive

PostgreSQL is not

We had many places in our app which relied on that behavior

Default solution

SELECT * FROM people
WHERE LOWER(Cname) = LOWER(?);

CREATE INDEX lower_name_idx ON people ((LOWER(title)));

Better solution for us
CREATE TABLE people (name CITEXT);
ostgresaql.org/docs/current/static/citext.html

MySQL has an implicit ordering

SELECT statements returned rows ordered by id
PostgreSQL has non-deterministic ordering

We added ORDER BY clauses when the order mattered

The big day

3am on Saturday night
Migrated millions of rows across many tables

Total downtime was under 5 minutes

Aftermath

Worked great at first, then started seeing performance problems

Our app and schema were optimized for MySQL, not
PostgreSQL

Sequences

MySQL does not have sequences, so we had them as rows in a table

CREATE FUNCTION next_sequence_value(sequence_id INT(11))
RETURNS INT
BEGIN
UPDATE sequences
SET value = last_insert_id(value + 1)
WHERE id = sequence_id;
RETURN last_insert_id();

PostgreSQL version of same function

CREATE FUNCTION next_sequence_value(integer)
RETURNS integer AS $$
UPDATE sequences
SET value = value + 1
WHERE id = $1
RETURNING value;
$$ LANGUAGE SQL;

These performed horribly; moved them to PostgreSQL sequences

Hardware

We had MySQL and PostgreSQL running on the same server
Write Ahead Log was on same partition

Fsync would flush way too much data and disk writes would
spike

Hardware

Moved PostgreSQL to its own server
More memory, faster hard drives
Moved the Write Ahead Log to its own partition

Moved the Write Ahead Log to its own hard drives

Queries

PostgreSQL executes queries differently from MySQL
Spent time studying explain plans
Adding new indexes

Rewriting expensive queries

Today

We can do deploys with database schema changes in under 30
seconds

Add new indexes while the site is up

We can hold requests, migrate the database, and then let the
requests through

Merchants will see a few slow requests, but they will see zero
downtime

Questions?

