High Availability at Braintree

Paul Gross

paul.gross@braintreepayments.com

twitter.com/pgrOss
github.com/pgr0ss
pgrs.net

Braintree

Braintree is a payment gateway

A payment gateway is software that allows merchants to process
credit card payments from your website and/or application

Our Merchants

anbab github ©twilie

uuuuuuuuuuuuuuuuuu
UBER AL CODING

Im [wmgsocﬁ Fab. heroku

o —

UpenTabIe"

Al

= stackoverflow 37signals l-x s LevelUp |

L taskrabbit [99] designs

Why is uptime important?
5 billion dollars in annual processing

$9,500 per minute for our merchants

Uptime Percentages

Availability % Downtime per year Downtime per month* Downtime per week
90% ("one nine") 36.5 days 72 hours 16.8 hours
99% ("two nines") 3.65 days 7.20 hours 1.68 hours
99.9% ("three nines") 8.76 hours 43.8 minutes 10.1 minutes
99.99% ("four nines") 52.56 minutes 4.32 minutes 1.01 minutes
99.999% ("five nines") 5.26 minutes 25.9 seconds 6.05 seconds
99.9999% ("six nines") 31.5 seconds 2.59 seconds 0.605 seconds
99.99999% ("seven nines") 3.15 seconds 0.259 seconds 0.0605 seconds

(https://en.wikipedia.org/wiki/High_availability)

2 kinds of downtime

Planned

Unplanned

Reduce our maintenance windows

Switched from MySQL to PostgreSQL

DDL migrations are extremely fast
Add indexes without locking tables

Transactional DDL

http://www.pgrs.net/201 1/03/25/migrating-from-mysql-to-
postgresql-slides/

Deploy process

Add new tables and columns

Roll out new code (server by server)

Add indexes

namespace :db do _
task :migrate_pre => :environment do
ActiveRecord: :Migrator.migrate "db/migrate pre"
end

task :migrate_post => :environment do
ActiveRecord: :Migrator.migrate "db/migrate post"
end
end

Rails caches columns

Can't drop columns in a post migration

Need to tell Rails to forget the column

class User < activeRecord::Base

deleted_columns :old_column
end

ActiveRecord: :Base.class_eval do
def self.deleted_columns(*column_names)
gdeleted_columns = column_names.map(&:to_s)
en
end

ActiveRecord: :Base.class_eval do
def self.deleted_columns(*column_names)
gdeleted_columns = column_names.map(&:to_s)
en

def selF.columns_with_removin%_deleted
columns_without_removing_deleted.reject do Icl
@deleted_columns.include?(c.name)
end
end
Slias_method_chain :columns, :removing_deleted
en

We run multiple versions of the code at
once

Fine for most features

Feature switches to turn on new features at once

Limitations

Column renames
Database failover

Infrastructure changes

Want a way to pause traffic

Broxy = Braintree Proxy

Python/Tornado (evented)
Accepts web requests
Feeds redis queue

Reads responses from redis

Dispatchers

Lightweight rack adapter
Takes requests from redis
Processes through rails

Puts response back in redis

require "#{ENvV['RAILS ROOT']}/config/environment"
app = Rack::Builder.new do

run ActionController: :Dispatcher.new
end

require "#{ENvV['RAILS ROOT']}/config/environment"
app = Rack::Builder.new do

run ActionController: :Dispatcher.new
end

Lloop do _
1f request_data = redis.pull_request
rack_request = {
"paTH INFO" => request_datal 'request"]["uri"]
"rack.input" => Stringl0.new(request_datal["body"])

}

gack_response = app.call(rack_request)
en
end

require "#{ENvV['RAILS ROOT']}/config/environment"
app = Rack::Builder.new do

run ActionController: :Dispatcher.new
end

Lloop do _
1f request_data = redis.pull_request
rack_request = {
"paTH INFO" => request_datal 'request"]["uri"]
"rack.input" => Stringl0.new(request_datal["body"])

}

rack_response = app.call(rack_request)
body = ""; rack_response[Z2].each { |part| body << part }

@redis.push_response(.
"status" => rack_response[0].to_1,
"body" => body
)
end
end

Stop dispatchers to suspend traffic

JULUy 0oooo

Dispatchers

Dispatchers

Summary - reducing maintenance windows

Pre and post migrations
Rolling deploys
PostgreSQL for fast DDL

Broxy to pause traffic

Unplanned failures

Servers will fail
Networks will go down
The unexpected will happen

We do our best to be resilient

Server failure

L oad balancers

Build our own
LVS/IPVS
Pacemaker
BigBrother

LitmusPaper

Load balancing

BigBrother

Ruby app
Runs on load balancers
Checks status of servers

Update IPVS rules

https://github.com/braintree/big_brother

LitmusPaper

Ruby app
Runs on backend servers

Queried by BigBrother via HTTP

Returns a health level

https://github.com/braintree/litmus _paper

Load balancing

Stateful services

Load balancers and PostgreSQL clusters
Pacemaker manages failover

Virtual IP follows the new primary

Network failures

800 @,Tracking Global Data Qutag: % | =
e i i i N —
' o
L) C [www.outages.org i =4
FILTERS =+ MEWS PICTURES VIDEO ALL VEATEGORY FETER S [HIDES]

ISl FULL SCREEN MAP

[] ALL CATEGORIES

| PLANNED
[UNPLANNED
) SUBMARINE (UNDERSEA)
() RESTORED

@ RUMORS

m SANDY VOLUNTEERS
—

INTERVIEW

VIDEO REPORTS

Scale =1 : 55M -55.01853, 58.200449

Fram: | Aug 2012 % || Dec2012 + |

Aug Sep Ot Moy Dwec
2012 2012 2f12 2012 2012

8 00

' [internetpulse.com

" Internet Health Report % i

'S
keynote

Internet Health Report

From: To:

Generated from 12/26/2012 8:07:22 AM to 12/26/2012 9:07:22 AM (PST)

Metric: Period:

Fosu: (CaTaT) (ATar

View: Destination by Origin

Ij Latency (ms) = I.' Last 1 Hour

Metrics by Origin

Destination — Latency (ms) - Last 1 Hour

M
Ll
=
=
=
-
]
=t
[}
=]
=

X0

| abe ATET Centurylink Cogent Lewvel3 NTT Sawvis 5B

¥ wa

ATET}

Centurylink

Cogent

Level3

)
-

Origin
Sawvvis

5B

@]

Sprint
Verizon

X0

=]
-]
=1

o
~J
L)
~J

~
L
=
BHEEEEEEBEBEE
M
~J

< 90ms Latency. < 1B0ms Latency. > 1B0ms Latency

Networking - inbound

BGP routes traffic through multiple ISPs and data centers

We use Pingdom and a handful of globally distributed servers to
test connectivity

Networking - outbound

We connect to many processing networks
ISP outages are usually partial
Sometimes, we can't reach every endpoint on all of our ISPs

Needed a way to choose an ISP per processing network

Processor proxies

Instead of connecting directly, connect through proxies
One proxy per TCP endpoint and uplink ISP
Load balance over these proxies

Allows us to route around ISP connection issues

Mallory

Python/Tornado (evented)
Proxies requests
SSL verification

Acts like LitmusPaper

https://github.com/braintree/mallory

Connection failures

Let the service heal (unbalance or pacemaker)

Retry request

Automate everything

Reduces human errors
Gives confidence that task will work
Speeds up processes
Less fiddling around in production

Capistrano

Summary - unplanned failures

Load balancing
Redundancy across ISPs
Let the system heal and retry

Automation

Questions!?

Paul Gross

paul.gross@braintreepayments.com

twitter.com/pgrOss
github.com/pgr0ss
pgrs.net

