High Availability at Braintree

Paul Gross

paul.gross@braintreepayments.com

twitter.com/pgrOss
github.com/pgr0ss
pgrs.net

Braintree

Braintree is a payment gateway

A payment gateway is software that allows merchants to process
credit card payments from your website and/or application

UBER

s
livingsocial

= LevelUp

TRUNK CLUB

MEMN'S OUTFITTERS

Our Merchants

e Y I

Fab.

(G TaskRabbit

GitHub

Igl stackoverflow

&P
POSHMARK

3 belly

37signals q.

ANGRY, BIRDS

CLOUDFLARE

Hotel Tonight

OpenTable

Why is uptime important?
$10 billion in annual processing

$19,000 per minute for our merchants

Uptime Percentages

Availability % Downtime per year Downtime per month* Downtime per week
90% ("one nine") 36.5 days 72 hours 16.8 hours
99% ("two nines") 3.65 days 7.20 hours 1.68 hours
99.9% ("three nines") 8.76 hours 43.8 minutes 10.1 minutes
99.99% ("four nines") 52.56 minutes 4.32 minutes 1.01 minutes
99.999% ("five nines") 5.26 minutes 25.9 seconds 6.05 seconds
99.9999% ("six nines") 31.5 seconds 2.59 seconds 0.605 seconds
99.99999% ("seven nines") 3.15 seconds 0.259 seconds 0.0605 seconds

(https://en.wikipedia.org/wiki/High_availability)

3 causes of downtime

Planned maintenance
Unplanned failure

People mistakes

Reduce our maintenance windows

Code deploys

Ruby on Rails

Put up maintenance page
Deploy code

Run database migrations

Take down maintenance page

Switched from MySQL to PostgreSQL

DDL migrations are extremely fast
Add indexes without locking tables

Transactional DDL

http://www.pgrs.net/201 1/03/25/migrating-from-mysql-to-
postgresql-slides/

Refined deploy process

Add new tables and columns

Roll out new code (server by server)

Add indexes

namespace :db do _
task :migrate_pre => :environment do
ActiveRecord: :Migrator.migrate "db/migrate pre"
end

task :migrate_post => :environment do
ActiveRecord: :Migrator.migrate "db/migrate post"
end
end

Rails caches columns

Can't drop columns in a post migration

Need to tell Rails to forget the column

class User < activeRecord::Base

deleted_columns :old_column
end

We run multiple versions of the code at
once

Fine for most features

Feature switches to turn on new features at once

Limitations

Column renames
Database failover

Infrastructure changes

Want a way to pause traffic

Broxy = Braintree Proxy

Python/Tornado (evented)
Accepts web requests
Feeds redis queue
Reads responses from redis

Responds to the web request

Dispatchers

Lightweight rack adapter
Takes requests from redis
Processes through rails

Puts response back in redis

require "#{ENvV['RAILS ROOT']}/config/environment"
app = Rack::Builder.new do

run ActionController: :Dispatcher.new
end

require "#{ENvV['RAILS ROOT']}/config/environment"
app = Rack::Builder.new do

run ActionController: :Dispatcher.new
end

Lloop do _
1f request_data = redis.pull_request
rack_request = {
"paTH INFO" => request_datal 'request"]["uri"]
"rack.input" => Stringl0.new(request_datal["body"])

}

gack_response = app.call(rack_request)
en
end

require "#{ENvV['RAILS ROOT']}/config/environment"
app = Rack::Builder.new do

run ActionController: :Dispatcher.new
end

Lloop do _
1f request_data = redis.pull_request
rack_request = {
"paTH INFO" => request_datal 'request"]["uri"]
"rack.input" => Stringl0.new(request_datal["body"])

}

rack_response = app.call(rack_request)
body = ""; rack_response[Z2].each { |partl| body << part }

@redis.push_response(.
"status" => rack_response[0].to_1,
"body" => body
)
end
end

Stop dispatchers to suspend traffic

JULUy 0oooo

Dispatchers

Dispatchers

Summary - reducing maintenance windows

Pre and post migrations
Rolling deploys
PostgreSQL for fast DDL

Broxy to pause traffic

Unplanned failures

Servers will fail
Networks will go down
The unexpected will happen

We do our best to be resilient

Server failure

L oad balancers

Build our own
LVS/IPVS
Pacemaker
BigBrother

LitmusPaper

Load balancing

BigBrother

Ruby app
Runs on load balancers
Checks status of servers

Update IPVS rules

https://github.com/braintree/big_brother

LitmusPaper

Ruby app
Runs on backend servers

Queried by BigBrother via HTTP

Returns a health level

https://github.com/braintree/litmus_paper

Load balancing

Stateful services

Load balancers and PostgreSQL clusters
Pacemaker manages failover

Virtual IP follows the new primary

Network failures

e 00

“Internet Health Report ®

= (% internetpulse.com

keynote

Internet Health Report

From: To:

s (AT&T +) (ATRT

Generated from 9/16/2013 7:34:59 PM to 9/16/2013 8:34:59 PM (PDT)

Metric:
. Latency (ms)

View: Destination by Origin Metrics by Origin

Period:

Last 1 Hour

Destination - Latency (ms) - Last 1 Hour

I abe AT&T Centurylink Cogent Level3 NTT 5awvis 5BC
: -

e

ATETH

CenturyLink

=

Cogent 0

Level3

EI:

QOrigin
Savvis

SBC

Sprint

Verizon

X0

(=
~l

=
=
1]

[

1

< 90ms Latency.

~
|

BEEEEEEEARE
DONEEEBERE
DECCEEEEEE
DOEEEEEBARE

< 1B0ms Latency.

Cri

Sprint Verizon

tica

X0

=~

=
~

> 180ms Latency.

Networking - inbound

BGP routes traffic through multiple ISPs and data centers

We use Pingdom and a handful of globally distributed servers to
test connectivity

Networking - outbound

We connect to many processing networks
ISP outages are usually partial
Sometimes, we can't reach every endpoint on all of our ISPs

Needed a way to choose an ISP per processing network

Processor proxies

Instead of connecting directly, connect through proxies
One proxy per TCP endpoint and uplink ISP
Load balance over these proxies

Allows us to route around ISP connection issues

Mallory

Python/Tornado (evented)
Proxies requests
SSL verification

Acts like LitmusPaper

https://github.com/braintree/mallory

Processor proxies

Mallory ISP #1

sefvice

Hﬁh&x““mﬁa_
Jffﬁg,;fﬂﬁ'

sz,f'
HHH“H;

Mallory ISP #2

Connection failures

Let the service heal (unbalance or pacemaker)

Retry request

Summary - unplanned failures

Load balancing
Redundancy across ISPs

Let the system heal and retry

People make mistakes

They can cause outages

They can exacerbate existing issues

EC2 Outage Apr 21, 201 |

"The traffic shift was executed incorrectly and rather than routing the traffic to the other router on the
primary network, the traffic was routed onto the lower capacity redundant EBS network."

https://aws.amazon.com/message/65648/

GitHub Outage Nov 14, 2010

"A few hours ago | was upgrading our continuous integration setup when a configuration error caused it to
run against our production environment rather than our testing environment."

https://github.com/blog/744-today-s-outage

PagerDuty Outage Jan 26, 201 3

"The reason the flip did not work was because the data snapshot on the new machine was not uploaded
correctly, due to the engineers being extremely tired and burned out after working through the night on the
upgrades.”

http://blog.pagerduty.com/2013/01/outage-post-mortem-jan-24-201 3/

Reduce the people factor

Automate everything

Reduces errors
Gives confidence that task will work
Speeds up processes
Less fiddling around in production

Capistrano and Puppet

Safeguards

Dangerous tasks refuse to run in production
Prompts include environment name

Read only database and logs

Monitoring

Nagios
PagerDuty
Multi-app log tail (with sampling)

Graphite and munin

Summary - people

Automation
Safeguards

Monitoring

Questions!?

Paul Gross

paul.gross@braintreepayments.com

twitter.com/pgrOss
github.com/pgr0ss
pgrs.net

